Representations of Affine Multifunctions by Affine Selections
نویسنده
چکیده
The paper deals with affine selections of affine (both convex and concave) multifunctions acting between finite-dimensional real normed spaces. It is proved that each affine multifunction with compact values possesses an exhaustive family of affine selections and, consequently, can be represented by its affine selections. Moreover, a convex multifunction with compact values possesses an exhaustive family of affine selections if and only if it is affine. Thus the existence of an exhaustive family of affine selections is the characteristic feature of affine multifunctions which differs them from other convex multifunctions with compact values. Besides a necessary and sufficient condition for a concave multifunction to be affine on a given convex subset is also proved. Finally it is shown that each affine multifunction with compact values can be represented as the closed convex hull of its exposed affine selections and as the convex hull of its extreme affine selections. These statements extend the Straszewicz theorem and the Krein–Milman theorem to affine multifunctions.
منابع مشابه
Realization of locally extended affine Lie algebras of type $A_1$
Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...
متن کاملAFFINE SUBGROUPS OF THE CLASSICAL GROUPS AND THEIR CHARACTER DEGREES
In this paper we describe how the degrees of the irreducible characters of the affine subgroups of the classical groups under consideration can be found inductively. In [4] Gow obtained certain character degrees for all of the affine subgroups of the classical groups. We apply the method of Fischer to the above groups and, in addition to the character degrees given in [4], we obtain some ne...
متن کاملOn Analytical Study of Self-Affine Maps
Self-affine maps were successfully used for edge detection, image segmentation, and contour extraction. They belong to the general category of patch-based methods. Particularly, each self-affine map is defined by one pair of patches in the image domain. By minimizing the difference between these patches, the optimal translation vector of the self-affine map is obtained. Almost all image process...
متن کاملCharacterizing Global Minimizers of the Difference of Two Positive Valued Affine Increasing and Co-radiant Functions
Many optimization problems can be reduced to a problem with an increasing and co-radiant objective function by a suitable transformation of variables. Functions, which are increasing and co-radiant, have found many applications in microeconomic analysis. In this paper, the abstract convexity of positive valued affine increasing and co-radiant (ICR) functions are discussed. Moreover, the ...
متن کاملState spaces of $K_0$ groups of some rings
Let $R$ be a ring with the Jacobson radical $J(R)$ and let $picolon Rto R/J(R)$ be the canonical map. Then $pi$ induces an order preserving group homomorphism $K_0picolon K_0(R)to K_0(R/J(R))$ and an affine continuous map $S(K_0pi)$ between the state space $St(R/J(R))$ and the state space $St(R).$ In this paper, we consider the natural affine map $S(K_0pi).$ We give a condition ...
متن کامل